Here are a number of relevant publications on top-down methods and applications.  Use the search box or browse all below.

If you have a paper you would like to have added to this compilation, please send us the link.

thinking

1.
Wang, Q., Wang, Q., Zhu, G. & Sun, L. Capillary Electrophoresis–Mass Spectrometry for Top-Down Proteomics. Annual Review of Analytical Chemistry (2025) http://doi.org/10.1146/annurev-anchem-071124-092242.
1.
Schairer, J., Römer, J. & Neusüß, C. CE-MS and CE-MS/MS for the multiattribute analysis of monoclonal antibody variants at the subunit level. Journal of Pharmaceutical and Biomedical Analysis 252, 116495 (2025).
1.
Matzanke, T. et al. Cysteine-Directed Isobaric Labeling Combined with GeLC-FAIMS-MS for Quantitative Top-Down Proteomics. J. Proteome Res. (2025) doi:10.1021/acs.jproteome.4c00835.
1.
Knott, S. J. et al. Deciphering Proteoform Landscape of Mammary Carcinoma by Top-Down Proteomics. J. Proteome Res. (2025) doi:10.1021/acs.jproteome.4c01044.
1.
Pavek, J. G. et al. Intact Mass Proteomics Using a Proteoform Atlas. J. Proteome Res. 24, 323–332 (2025).
1.
1.
Britt, H. M., Ben-Younis, A., Page, N. & Thalassinos, K. A Conformation-Specific Approach to Native Top-down Mass Spectrometry. J. Am. Soc. Mass Spectrom. 35, 3203–3213 (2024).
1.
Mikawy, N. N. et al. Are Internal Fragments Observable in Electron Based Top-Down Mass Spectrometry? Molecular & Cellular Proteomics 0, (2024).
1.
Schwenzer, A.-K., Kruse, L., Jooß, K. & Neusüß, C. Capillary electrophoresis-mass spectrometry for protein analyses under native conditions: Current progress and perspectives. PROTEOMICS 24, 2300135 (2024).
1.
Oates, R. N., Lieu, L. B., Srzentić, K., Damoc, E. & Fornelli, L. Characterization of a Monoclonal Antibody by Native and Denaturing Top-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. 35, 2197–2208 (2024).
1.
Habeck, T., Maciel, E. V. S., Kretschmer, K. & Lermyte, F. Charge site manipulation to enhance top-down fragmentation efficiency. PROTEOMICS 24, 2300082 (2024).
1.
D’Ippolito, R. A. et al. Determining KRAS4B-Targeting Compound Specificity by Top-Down Mass Spectrometry. Methods Mol Biol 2823, 291–310 (2024).
1.
Wang, C. R., Zenaidee, M. A., Snel, M. F. & Pukala, T. L. Exploring Top-Down Mass Spectrometric Approaches To Probe Forest Cobra (Naja melanoleuca) Venom Proteoforms. J. Proteome Res. (2024) doi:10.1021/acs.jproteome.4c00486.
1.
Zhan, Z. & Wang, L. Fast peak error correction algorithms for proteoform identification using top-down tandem mass spectra. Bioinformatics btae149 (2024) doi:10.1093/bioinformatics/btae149.
1.
Bailey, A. O., Durbin, K. R., Robey, M. T., Palmer, L. K. & Russell, W. K. Filling the gaps in peptide maps with a platform assay for top-down characterization of purified protein samples. PROTEOMICS n/a, 2400036 (2024).
1.
Takemori, A. et al. GeLC-FAIMS-MS workflow for in-depth middle-down proteomics. PROTEOMICS 24, 2200431 (2024).
1.
Hellinger, J. & Brodbelt, J. S. Impact of Charge State on Characterization of Large Middle-Down Sized Peptides by Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 35, 1647–1656 (2024).
1.
Robey, M. T. & Durbin, K. R. Improving Top-Down Sequence Coverage with Targeted Fragment Matching. J. Am. Soc. Mass Spectrom. (2024) doi:10.1021/jasms.4c00161.
1.
Degnan, D. J. et al. IsoForma: An R Package for Quantifying and Visualizing Positional Isomers in Top-Down LC-MS/MS Data. J. Proteome Res. (2024) doi:10.1021/acs.jproteome.3c00681.
1.
Polák, M., Černý, J. & Novák, P. Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis. Anal. Chem. (2024) doi:10.1021/acs.analchem.3c03759.
1.
Lieu, L. B., Hinkle, J. D., Syka, J. E. P. & Fornelli, L. Leveraging Ion–Ion and Ion–Photon Activation to Improve the Sequencing of Proteins Carrying Multiple Disulfide Bonds: The Human Serum Albumin Case Study. J. Am. Soc. Mass Spectrom. (2024) doi:10.1021/jasms.4c00391.
1.
Helms, A. & Brodbelt, J. S. Mass Spectrometry Strategies for O-Glycoproteomics. Cells 13, 394 (2024).
1.
Xu, T., Wang, Q., Wang, Q. & Sun, L. Mass spectrometry-intensive top-down proteomics: an update on technology advancements and biomedical applications. Analytical Methods 16, 4664–4682 (2024).
1.
Chapman, E. A. et al. Native Top-Down Mass Spectrometry for Characterizing Sarcomeric Proteins Directly from Cardiac Tissue Lysate. J. Am. Soc. Mass Spectrom. 35, 738–745 (2024).
1.
Fischer, M. S. et al. Online Mixed-Bed Ion Exchange Chromatography for Native Top-Down Proteomics of Complex Mixtures. J. Proteome Res. (2024) doi:10.1021/acs.jproteome.4c00430.
1.
Drown, B. S. et al. Precise Readout of MEK1 Proteoforms upon MAPK Pathway Modulation by Individual Ion Mass Spectrometry. Anal. Chem. (2024) doi:10.1021/acs.analchem.3c04758.
1.
Chowdhury, T. et al. Quantitative Top-down Proteomics Revealed Kinase Inhibitor-Induced Proteoform-Level Changes in Cancer Cells. J. Proteome Res. (2024) doi:10.1021/acs.jproteome.4c00778.
1.
Su, P. et al. Single Cell Analysis of Proteoforms. J. Proteome Res. (2024) doi:10.1021/acs.jproteome.4c00075.
1.
Carr, A. V., Bollis, N. E., Pavek, J. G., Shortreed, M. R. & Smith, L. M. Spectral averaging with outlier rejection algorithms to increase identifications in top-down proteomics. PROTEOMICS n/a, 2300234 (2024).
1.
Langford, J. B. et al. Strategies for Top–Down Hydrogen Deuterium Exchange-Mass Spectrometry: A Mini Review and Perspective. Journal of Mass Spectrometry 59, e5097 (2024).
1.
Walker, J. N., Gautam, A. K. S., Matouschek, A. & Brodbelt, J. S. Structural Analysis of the 20S Proteasome Using Native Mass Spectrometry and Ultraviolet Photodissociation. J. Proteome Res. (2024) doi:10.1021/acs.jproteome.4c00568.
1.
Lermyte, F. The need for open and FAIR data in top-down proteomics. PROTEOMICS 24, 2300354 (2024).
1.
Saei, A. A., Sun, L. & Mahmoudi, M. The role of protein corona in advancing plasma proteomics. PROTEOMICS n/a, 2400028 (2024).
1.
Berthias, F., Bilgin, N., Mecinović, J. & Jensen, O. N. Top-down ion mobility/mass spectrometry reveals enzyme specificity: Separation and sequencing of isomeric proteoforms. PROTEOMICS 24, 2200471 (2024).
1.
1.
Kandi, S. et al. Amyloid β Proteoforms Elucidated by Quantitative LC/MS in the 5xFAD Mouse Model of Alzheimer's Disease. J. Proteome Res. (2023) doi:10.1021/acs.jproteome.3c00353.
1.
Chen, W., Ding, Z., Zang, Y. & Liu, X. Characterization of Proteoform Post-Translational Modifications by Top-Down and Bottom-Up Mass Spectrometry in Conjunction with Annotations. J. Proteome Res. (2023) doi:10.1021/acs.jproteome.3c00207.
1.
Bashyal, A., Dunham, S. D. & Brodbelt, J. S. Characterization of Unbranched Ubiquitin Tetramers by Combining Ultraviolet Photodissociation with Proton Transfer Charge Reduction Reactions. Anal. Chem. (2023) doi:10.1021/acs.analchem.3c02618.
1.
1.
Lanzillotti, M. & Brodbelt, J. S. Comparison of Top-Down Protein Fragmentation Induced by 213 and 193 nm UVPD. J. Am. Soc. Mass Spectrom. (2023) doi:10.1021/jasms.2c00288.
1.
Pavek, J. G. et al. Cysteine Counting via Isotopic Chemical Labeling for Intact Mass Proteoform Identifications in Tissue. Anal. Chem. (2023) doi:10.1021/acs.analchem.3c02473.
1.
Chapman, E. A. et al. Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics. J. Proteome Res. (2023) doi:10.1021/acs.jproteome.2c00729.
1.
1.
Berthias, F., Cooper-Shepherd, D. A., Holck, F. H. V., Langridge, J. I. & Jensen, O. N. Full Separation and Sequencing of Isomeric Proteoforms in the Middle-Down Mass Range Using Cyclic Ion Mobility and Electron Capture Dissociation. Anal. Chem. (2023) doi:10.1021/acs.analchem.3c02120.
1.
Melby, J. A. et al. High sensitivity top–down proteomics captures single muscle cell heterogeneity in large proteoforms. Proceedings of the National Academy of Sciences 120, e2222081120 (2023).
1.
McGee, J. P. et al. Immunocomplexed Antigen Capture and Identification by Native Top-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. (2023) doi:10.1021/jasms.3c00235.
1.
Zhang, Y., Cai, Q., Luo, Y., Zhang, Y. & Li, H. Integrated top-down and bottom-up proteomics mass spectrometry for the characterization of endogenous ribosomal protein heterogeneity. Journal of Pharmaceutical Analysis 13, 63–72 (2023).
1.
Oluwole, A., Shutin, D. & Bolla, J. R. Mass spectrometry of intact membrane proteins: shifting towards a more native-like context. Essays in Biochemistry EBC20220169 (2023) doi:10.1042/EBC20220169.
1.
Guo, Y., Cupp-Sutton, K. A., Zhao, Z., Anjum, S. & Wu, S. Multidimensional separations in top–down proteomics. Analytical Science Advances n/a, (2023).
1.
Brown, K. A. et al. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal. Chem. (2023) doi:10.1021/acs.analchem.2c03916.
1.
Lloyd-Jones, C. et al. Preparative Electrophoresis for HDL Particle Size Separation and Intact-Mass Apolipoprotein Proteoform Analysis. J. Proteome Res. (2023) doi:10.1021/acs.jproteome.2c00804.
1.
You, J. & Park, H.-M. Progress in Top-Down LC-MS Analysis of Antibodies: Review. Biotechnol Bioproc E 28, 226–233 (2023).
1.
Yang, L., Stanisheuski, S., Song, Z., Bracha, S. & Maier, C. S. Top-down mass spectrometry for characterizing the low molecular weight proteome of canine osteosarcoma cell phenotypes. Eur J Mass Spectrom (Chichester) 14690667231202766 (2023) doi:10.1177/14690667231202766.
1.
Polák, M. et al. Top-Down Proteoform Analysis by 2D MS with Quadrupolar Detection. Anal. Chem. (2023) doi:10.1021/acs.analchem.3c02225.
1.
Po, A. & Eyers, C. E. Top-Down Proteomics and the Challenges of True Proteoform Characterization. J. Proteome Res. (2023) doi:10.1021/acs.jproteome.3c00416.
1.
Olianas, A. et al. Top-Down Proteomics Detection of Potential Salivary Biomarkers for Autoimmune Liver Diseases Classification. International Journal of Molecular Sciences 24, 959 (2023).
1.
Miller, S. A. et al. Top/Middle-Down Characterization of α-Synuclein Glycoforms. Anal. Chem. (2023) doi:10.1021/acs.analchem.3c02405.
1.
Martin, E. A., Fulcher, J. M., Zhou, M., Monroe, M. E. & Petyuk, V. A. TopPICR: A Companion R Package for Top-Down Proteomics Data Analysis. J. Proteome Res. (2023) doi:10.1021/acs.jproteome.2c00570.
1.
Dai, Y., Millikin, R. J., Rolfs, Z., Shortreed, M. R. & Smith, L. M. A Hybrid Spectral Library and Protein Sequence Database Search Strategy for Bottom-Up and Top-Down Proteomic Data Analysis. J. Proteome Res. (2022) doi:10.1021/acs.jproteome.2c00305.
1.
Fornelli, L. & Toby, T. K. Characterization of large intact protein ions by mass spectrometry: What directions should we follow? Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1870, 140758 (2022).
1.
Lin, Y., Agarwal, A. M., Marshall, A. G. & Anderson, L. C. Characterization of Structural Hemoglobin Variants by Top-Down Mass Spectrometry and R Programming Tools for Rapid Identification. J. Am. Soc. Mass Spectrom. 33, 123–130 (2022).
1.
Cramer, D. A. T., Franc, V., Caval, T. & Heck, A. J. R. Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry. Anal. Chem. (2022) doi:10.1021/acs.analchem.2c02215.
1.
Brodbelt, J. S. Deciphering combinatorial post-translational modifications by top-down mass spectrometry. Current Opinion in Chemical Biology 70, 102180 (2022).
1.
Babović, M., Shliaha, P. V., Gibb, S. & Jensen, O. N. Effective Amino Acid Sequencing of Intact Filgrastim by Multimodal Mass Spectrometry with Topdownr. J. Am. Soc. Mass Spectrom. (2022) doi:10.1021/jasms.2c00193.
1.
1.
Rojas Ramírez, C., Murtada, R., Gao, J. & Ruotolo, B. T. Free Radical-Based Sequencing for Native Top-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. (2022) doi:10.1021/jasms.2c00252.
1.
Almuslehi, M. S. M., Sen, M. K., Shortland, P. J., Mahns, D. A. & Coorssen, J. R. Histological and Top-Down Proteomic Analyses of the Visual Pathway in the Cuprizone Demyelination Model. J Mol Neurosci (2022) http://doi.org/10.1007/s12031-022-01997-w.
1.
Dunham, S. D., Wei, B., Lantz, C., Loo, J. A. & Brodbelt, J. S. Impact of Internal Fragments on Top-Down Analysis of Intact Proteins by 193 nm UVPD. J. Proteome Res. (2022) doi:10.1021/acs.jproteome.2c00583.
1.
Kaulich, P. T., Cassidy, L., Winkels, K. & Tholey, A. Improved Identification of Proteoforms in Top-Down Proteomics Using FAIMS with Internal CV Stepping. Anal. Chem. (2022) doi:10.1021/acs.analchem.1c05123.
1.
Watts, E., Thyer, R., Ellington, A. D. & Brodbelt, J. S. Integrated Top-Down and Bottom-Up Mass Spectrometry for Characterization of Diselenide Bridging Patterns of Synthetic Selenoproteins. Anal. Chem. (2022) doi:10.1021/acs.analchem.2c01433.
1.
Macias, L. A. & Brodbelt, J. S. Investigation of Product Ions Generated by 193 nm Ultraviolet Photodissociation of Peptides and Proteins Containing Disulfide Bonds. J. Am. Soc. Mass Spectrom. (2022) doi:10.1021/jasms.2c00124.
1.
Wang, Q., Sun, L. & Lundquist, P. K. Large-scale top-down proteomics of the Arabidopsis thaliana leaf and chloroplast proteomes. PROTEOMICS n/a, 2100377 (2022).
1.
Hale, O. J., Hughes, J. W., Sisley, E. K. & Cooper, H. J. Native Ambient Mass Spectrometry Enables Analysis of Intact Endogenous Protein Assemblies up to 145 kDa Directly from Tissue. Anal. Chem. 94, 5608–5614 (2022).
1.
Hale, O. J. & Cooper, H. J. Native Ambient Mass Spectrometry of an Intact Membrane Protein Assembly and Soluble Protein Assemblies Directly from Lens Tissue. Angewandte Chemie International Edition 61, e202201458 (2022).
1.
Harvey, S. R., O'Neale, C., Schey, K. L. & Wysocki, V. H. Native Mass Spectrometry and Surface Induced Dissociation Provide Insight into the Post-Translational Modifications of Tetrameric AQP0 Isolated from Bovine Eye Lens. Anal. Chem. (2022) doi:10.1021/acs.analchem.1c04322.
1.
Jooß, K., McGee, J. P. & Kelleher, N. L. Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics. Acc. Chem. Res. (2022) doi:10.1021/acs.accounts.2c00216.
1.
Liu, R., Xia, S. & Li, H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. Mass Spectrometry Reviews n/a, e21793 (2022).
1.
1.
Burnum-Johnson, K. E. et al. New Views of Old Proteins: Clarifying the Enigmatic Proteome. Molecular & Cellular Proteomics 21, (2022).
1.
Johnson, K. R., Gao, Y., Greguš, M. & Ivanov, A. R. On-capillary Cell Lysis Enables Top-down Proteomic Analysis of Single Mammalian Cells by CE-MS/MS. Anal. Chem. (2022) doi:10.1021/acs.analchem.2c03045.
1.
Rossetti, D. V. et al. Pediatric Brain Tumors: Signatures from the Intact Proteome. International Journal of Molecular Sciences 23, 3196 (2022).
1.
Zhan, Z. & Wang, L. Proteoform identification based on top-down tandem mass spectra with peak error corrections. Briefings in Bioinformatics bbab599 (2022) doi:10.1093/bib/bbab599.
1.
Yang, M. et al. Proteoform-Selective Imaging of Tissues Using Mass Spectrometry. Angewandte Chemie International Edition n/a, (2022).
1.
Habeck, T. & Lermyte, F. Seeing the complete picture: proteins in top-down mass spectrometry. Essays in Biochemistry EBC20220098 (2022) doi:10.1042/EBC20220098.
1.
Takemori, A., Kaulich, P. T., Cassidy, L., Takemori, N. & Tholey, A. Size-Based Proteome Fractionation through Polyacrylamide Gel Electrophoresis Combined with LC–FAIMS–MS for In-Depth Top-Down Proteomics. Anal. Chem. (2022) doi:10.1021/acs.analchem.2c02777.
1.
Meier-Credo, J. et al. Top-Down Identification and Sequence Analysis of Small Membrane Proteins Using MALDI-MS/MS. J. Am. Soc. Mass Spectrom. (2022) doi:10.1021/jasms.2c00102.
1.
McCool, E. N., Lubeckyj, R. A., Chen, D. & Sun, L. Top-Down Proteomics by Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Large-Scale Characterization of Proteoforms in Complex Samples. in Capillary Electrophoresis-Mass Spectrometry : Methods and Protocols (eds. Neusüß, C. & Jooß, K.) 107–124 (Springer US, New York, NY, 2022). doi:10.1007/978-1-0716-2493-7_8.
1.
1.
Borges Lima, D., Dupré, M., Mariano Santos, M. D., Carvalho, P. C. & Chamot-Rooke, J. DiagnoTop: A Computational Pipeline for Discriminating Bacterial Pathogens without Database Search. J. Am. Soc. Mass Spectrom. (2021) doi:10.1021/jasms.1c00014.
1.
Beckman, J. S. et al. Improved Protein and PTM Characterization with a Practical Electron-Based Fragmentation on Q-TOF Instruments. J. Am. Soc. Mass Spectrom. (2021) doi:10.1021/jasms.0c00482.
1.
Schmitt, N. D., Berger, J. M., Conway, J. B. & Agar, J. N. Increasing Top-Down Mass Spectrometry Sequence Coverage by an Order of Magnitude through Optimized Internal Fragment Generation and Assignment. Anal. Chem. (2021) doi:10.1021/acs.analchem.0c04670.
1.
Lu, L., Scalf, M., Shortreed, M. R. & Smith, L. M. Mesh Fragmentation Improves Dissociation Efficiency in Top-down Proteomics. J. Am. Soc. Mass Spectrom. (2021) doi:10.1021/jasms.0c00462.
1.
Melby, J. A. et al. Novel Strategies to Address the Challenges in Top-Down Proteomics. J. Am. Soc. Mass Spectrom. 32, 1278–1294 (2021).
1.
Römer, J., Stolz, A., Kiessig, S., Moritz, B. & Neusüß, C. Online Top-down Mass Spectrometric Identification of CE(SDS)-separated Antibody Fragments by Two-dimensional Capillary Electrophoresis. Journal of Pharmaceutical and Biomedical Analysis 114089 (2021) http://doi.org/10.1016/j.jpba.2021.114089.
1.
Jeanne Dit Fouque, K. et al. Proteoform Differentiation using Tandem Trapped Ion Mobility, Electron Capture Dissociation, and ToF Mass Spectrometry. Anal. Chem. (2021) doi:10.1021/acs.analchem.1c01735.
1.
1.
Winkels, K., Koudelka, T. & Tholey, A. Quantitative Top-Down Proteomics by Isobaric Labeling with Thiol-Directed Tandem Mass Tags. J. Proteome Res. (2021) doi:10.1021/acs.jproteome.1c00460.
1.
Yu, D. et al. Quantitative Top-Down Proteomics in Complex Samples Using Protein-Level Tandem Mass Tag Labeling. J. Am. Soc. Mass Spectrom. (2021) doi:10.1021/jasms.0c00464.
1.
Nickerson, J. L. et al. Recent advances in top-down proteome sample processing ahead of MS analysis. Mass Spectrometry Reviews n/a, (2021).
1.
Zhang, Z., Hug, C., Tao, Y., Bitsch, F. & Yang, Y. Solving Complex Biologics Truncation Problems by Top-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. (2021) doi:10.1021/jasms.0c00343.
1.
Smith, L. M. et al. The Human Proteoform Project: Defining the human proteome. Science Advances 7, (2021).
1.
Simanjuntak, Y., Schamoni-Kast, K., Grün, A., Uetrecht, C. & Scaturro, P. Top-Down and Bottom-Up Proteomics Methods to Study RNA Virus Biology. Viruses 13, 668 (2021).
1.
Lefebvre, D. et al. Top-Down Mass Spectrometry for Trace Level Quantification of Staphylococcal Enterotoxin A Variants. J. Proteome Res. (2021) doi:10.1021/acs.jproteome.1c00886.
1.
Nagy, C., Andrási, M., Hamidli, N., Gyémánt, G. & Gáspár, A. Top-down proteomic analysis of monoclonal antibodies by capillary zone electrophoresis - mass spectrometry. Journal of Chromatography Open 100024 (2021) http://doi.org/10.1016/j.jcoa.2021.100024.
1.
Choi, I. K., Jiang, T., Kankara, S. R., Wu, S. & Liu, X. TopMSV: A Web-Based Tool for Top-Down Mass Spectrometry Data Visualization. J. Am. Soc. Mass Spectrom. (2021) doi:10.1021/jasms.0c00460.
1.
Patrie, S. M. & Cline, E. N. Chapter 17 - Top-down mass spectrometry for protein molecular diagnostics, structure analysis, and biomarker discovery. in Proteomic and Metabolomic Approaches to Biomarker Discovery (Second Edition) (eds. Issaq, H. J. & Veenstra, T. D.) 313–326 (Academic Press, Boston, 2020). doi:10.1016/B978-0-12-818607-7.00017-7.
1.
1.
Yin, V., Holzscherer, D. & Konermann, L. Delineating Heme-Mediated versus Direct Protein Oxidation in Peroxidase-Activated Cytochrome c by Top-Down Mass Spectrometry. Biochemistry (2020) doi:10.1021/acs.biochem.0c00609.
1.
Gadkari, V. V. et al. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions. Anal. Chem. (2020) doi:10.1021/acs.analchem.0c03372.
1.
Greisch, J.-F., van der Laarse, S. A. M. & Heck, A. J. R. Enhancing Top-Down Analysis Using Chromophore-Assisted Infrared Multiphoton Dissociation from (Phospho)peptides to Protein Assemblies. Anal. Chem. (2020) doi:10.1021/acs.analchem.0c03412.
1.
McIlwain, S. J. et al. Enhancing Top-Down Proteomics Data Analysis by Combining Deconvolution Results through a Machine Learning Strategy. J. Am. Soc. Mass Spectrom. (2020) doi:10.1021/jasms.0c00035.
1.
Basharat, A. R., Ning, X. & Liu, X. EnvCNN: A Convolutional Neural Network Model for Evaluating Isotopic Envelopes in Top-Down Mass-spectral Deconvolution. Anal. Chem. (2020) doi:10.1021/acs.analchem.0c00903.
1.
Schaffer, L. V., Millikin, R. J., Shortreed, M. R., Scalf, M. & Smith, L. M. Improving Proteoform Identifications in Complex Systems Through Integration of Bottom-Up and Top-Down Data. J. Proteome Res. (2020) doi:10.1021/acs.jproteome.0c00332.
1.
Weisbrod, C. R., Anderson, L. C., Greer, J. B., DeHart, C. J. & Hendrickson, C. L. Increased Single Spectrum Top-Down Protein Sequence Coverage in Trapping Mass Spectrometers with Chimeric Ion Loading. Anal. Chem. (2020) doi:10.1021/acs.analchem.0c01064.
1.
Kafader, J. O. et al. Individual Ion Mass Spectrometry Enhances the Sensitivity and Sequence Coverage of Top-Down Mass Spectrometry. J. Proteome Res. (2020) doi:10.1021/acs.jproteome.9b00797.
1.
Srzentić, K. et al. Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. 31, 1783–1802 (2020).
1.
Zenaidee, M. A. et al. Internal Fragments Generated by Electron Ionization Dissociation Enhance Protein Top-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. 31, 1896–1902 (2020).
1.
Wu, Z. et al. MASH Explorer: A Universal Software Environment for Top-Down Proteomics. J. Proteome Res. (2020) doi:10.1021/acs.jproteome.0c00469.
1.
Shliaha, P. V. et al. Middle-Down Proteomic Analyses with Ion Mobility Separations of Endogenous Isomeric Proteoforms. Anal. Chem. (2020) doi:10.1021/acs.analchem.9b05011.
1.
Hale, O. J. & Cooper, H. J. Native Mass Spectrometry Imaging and In Situ Top-Down Identification of Intact Proteins Directly from Tissue. J. Am. Soc. Mass Spectrom. 31, 2531–2537 (2020).
1.
Dupré, M. et al. Optimization of a Top-Down Proteomics Platform for Closely-Related Pathogenic Bacteria Discrimination. J. Proteome Res. (2020) doi:10.1021/acs.jproteome.0c00351.
1.
1.
Chen, D. et al. Predicting Electrophoretic Mobility of Proteoforms for Large-Scale Top-Down Proteomics. Anal. Chem. (2020) doi:10.1021/acs.analchem.9b05578.
1.
DelGuidice, C. E., Ismaiel, O. A., Mylott Jr, W. R. & Halquist, M. S. Quantitative Bioanalysis of Intact Large Molecules using Mass Spectrometry. J Appl Bioanal 6, 52–64 (2020).
1.
Corbett, J. R., Robinson, D. E. & Patrie, S. M. Robustness and Ruggedness of Isoelectric Focusing and Superficially Porous Liquid Chromatography with Fourier Transform Mass Spectrometry. J. Am. Soc. Mass Spectrom. (2020) doi:10.1021/jasms.0c00355.
1.
Dubois, C. et al. Top-down and bottom-up proteomics of circulating S100A8/S100A9 in plasma of septic shock patients. J. Proteome Res. (2020) doi:10.1021/acs.jproteome.9b00690.
1.
Lodge, J. M. et al. Top-Down Characterization of an Intact Monoclonal Antibody using Activated Ion-Electron Transfer Dissociation. Anal. Chem. (2020) doi:10.1021/acs.analchem.0c00705.
1.
Brown, K. A., Melby, J. A., Roberts, D. S. & Ge, Y. Top-down Proteomics: Challenges, Innovations, and Applications in Basic and Clinical Research. Expert Review of Proteomics 0, null (2020).
1.
LeDuc, R. D. et al. Accurate Estimation of Context-Dependent False Discovery Rates in Top-Down Proteomics. Mol. Cell Proteomics 18, 796–805 (2019).
1.
Pu, Y. et al. Application of a label-free and domain-specific free thiol method in monoclonal antibody characterization. Journal of Chromatography B 1114–1115, 93–99 (2019).
1.
Wilkins John T et al. Associations Between Apolipoprotein A-I Proteoforms and Markers of Cardiometabolic Health. Circulation 140, A15086–A15086 (2019).
1.
Schaffer, L. V. et al. Back Cover: Identification and Quantification of Proteoforms by Mass Spectrometry. PROTEOMICS 19, 1970085 (2019).
1.
1.
Dowling, P., Zweyer, M., Swandulla, D. & Ohlendieck, K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 7, 25 (2019).
1.
Gregorich, Z. R. et al. Deletion of Enigma Homologue from the Z-disc slows tension development kinetics in mouse myocardium. The Journal of General Physiology 151, 670–679 (2019).
1.
Coelho Graça, D. et al. Detection of Proteoforms Using Top-Down Mass Spectrometry and Diagnostic Ions. in Proteomics for Biomarker Discovery: Methods and Protocols (eds. Brun, V. & Couté, Y.) 173–183 (Springer New York, New York, NY, 2019). doi:10.1007/978-1-4939-9164-8_12.
1.
Holt, M. V., Wang, T. & Young, N. L. High-Throughput Quantitative Top-Down Proteomics: Histone H4. J. Am. Soc. Mass Spectrom. (2019) doi:10.1007/s13361-019-02350-z.
1.
Schaffer, L. V. et al. Identification and Quantification of Proteoforms by Mass Spectrometry. PROTEOMICS 19, 1800361 (2019).
1.
Vialaret, J., Lehmann, S. & Hirtz, C. Intact Protein Analysis by LC-MS for Characterizing Biomarkers in Cerebrospinal Fluid. in Proteomics for Biomarker Discovery: Methods and Protocols (eds. Brun, V. & Couté, Y.) 163–172 (Springer New York, New York, NY, 2019). doi:10.1007/978-1-4939-9164-8_11.
1.
Lubeckyj, R. A., Basharat, A. R., Shen, X., Liu, X. & Sun, L. Large-Scale Qualitative and Quantitative Top-Down Proteomics Using Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry with Nanograms of Proteome Samples. J. Am. Soc. Mass Spectrom. (2019) doi:10.1007/s13361-019-02167-w.
1.
Lącki, M. K. et al. masstodon: A tool for assigning peaks and modeling electron transfer reactions in top-down mass spectrometry. Anal. Chem. (2019) doi:10.1021/acs.analchem.8b01479.
1.
Boomathi Pandeswari, P. & Sabareesh, V. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Advances 9, 313–344 (2019).
1.
1.
Huguet, R. et al. Proton transfer charge reduction enables high-throughput top-down analysis of large proteoforms. Anal. Chem. (2019) doi:10.1021/acs.analchem.9b03925.
1.
Sekera, E. R. & Wood, T. D. Sequencing Proteins from Bottom to Top: Combining Techniques for Full Sequence Analysis of Glucokinase. in Advancements of Mass Spectrometry in Biomedical Research (eds. Woods, A. G. & Darie, C. C.) 111–119 (Springer International Publishing, Cham, 2019). doi:10.1007/978-3-030-15950-4_6.
1.
Lermyte, F., Tsybin, Y. O., O'Connor, P. B. & Loo, J. A. Top or Middle? Up or Down? Toward a Standard Lexicon for Protein Top-Down and Allied Mass Spectrometry Approaches. J. Am. Soc. Mass Spectrom. (2019) doi:10.1007/s13361-019-02201-x.
1.
Lesne, J., Bousquet, M.-P., Marcoux, J. & Locard-Paulet, M. Top-Down and Intact Protein Mass Spectrometry Data Visualization for Proteoform Analysis Using VisioProt-MS. Bioinform Biol Insights 13, 1177932219868223 (2019).
1.
Jin, Y., Diffee, G. M., Colman, R. J., Anderson, R. M. & Ge, Y. Top-down Mass Spectrometry of Sarcomeric Protein Post-translational Modifications from Non-human Primate Skeletal Muscle. J. Am. Soc. Mass Spectrom. (2019) doi:10.1007/s13361-019-02139-0.
1.
Lakshmanan, R. & Loo, J. A. Top-down protein identification using a time-of-flight mass spectrometer and data independent acquisition. International Journal of Mass Spectrometry 435, 136–144 (2019).
1.
Chen, D., Geis-Asteggiante, L., Gomes, F. P., Ostrand-Rosenberg, S. & Fenselau, C. Top-down Proteomic Characterization of Truncated Proteoforms. J. Proteome Res. (2019) doi:10.1021/acs.jproteome.9b00487.
1.
Vincent, D., Binos, S., Rochfort, S. & Spangenberg, G. Top-Down Proteomics of Medicinal Cannabis. Proteomes 7, 33 (2019).
1.
Melby, J. A. et al. Top-Down Proteomics Reveals Myofilament Proteoform Heterogeneity among Various Rat Skeletal Muscle Tissues. J. Proteome Res. (2019) doi:10.1021/acs.jproteome.9b00623.
1.
Furber, K. L., Backlund, P. S., Yergey, A. L. & Coorssen, J. R. Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion. Proteomes 7, 34 (2019).
1.
Yang, R. & Zhu, D. A graph-based filtering method for top-down mass spectral identification. BMC Genomics 19, 666 (2018).
1.
Ghezellou, P. et al. A perspective view of top-down proteomics in snake venom research. Rapid Communications in Mass Spectrometry 0, (2018).
1.
Gargano, A. F. G. et al. Capillary HILIC-MS: a new tool for sensitive top-down proteomics. Anal. Chem. (2018) doi:10.1021/acs.analchem.8b00382.
1.
Padiglia, A. et al. Extensive Characterization of the Human Salivary Basic Proline-Rich Proteins Family by Top-Down Mass Spectrometry. J. Proteome Res. (2018) doi:10.1021/acs.jproteome.8b00444.
1.
Aebersold, R. et al. How many human proteoforms are there? Nature Chemical Biology 14, 206–214 (2018).
1.
Garabedian, A. et al. Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal. Chem. (2018) doi:10.1021/acs.analchem.7b05224.
1.
Breuker, K. Mass spectrometry: Raw protein from the top down. Nature Chemistry 10, 114 (2018).
1.
Srzentic, K. et al. Multiplexed Middle-Down Mass Spectrometry Reveals Light and Heavy Chain Connectivity in a Monoclonal Antibody. Anal. Chem. (2018) doi:10.1021/acs.analchem.8b02398.
1.
LeDuc, R. D. et al. ProForma: A Standard Proteoform Notation. J. Proteome Res. 17, 1321–1325 (2018).
1.
Regnier, F. E. & Kim, J. Proteins and Proteoforms: New Separation Challenges. Anal. Chem. 90, 361–373 (2018).
1.
1.
Smith, L. M. & Kelleher, N. L. Proteoforms as the next proteomics currency. Science 359, 1106–1107 (2018).
1.
Kachuk, C. & Doucette, A. A. The benefits (and misfortunes) of SDS in top-down proteomics. Journal of Proteomics 175, 75–86 (2018).
1.
Chen, D. et al. Top-Down Analysis of Branched Proteins Using Mass Spectrometry. Anal. Chem. (2018) doi:10.1021/acs.analchem.7b05234.
1.
Gomes, F. et al. Top-down Analysis of Novel Synthetic Branched Proteins. Journal of Mass Spectrometry 0, (2018).
1.
1.
Floris, F. et al. Top-down deep sequencing of Ubiquitin using two-dimensional mass spectrometry. Anal. Chem. (2018) doi:10.1021/acs.analchem.8b00500.
1.
Manconi, B. et al. Top-down proteomic profiling of human saliva in multiple sclerosis patients. Journal of Proteomics 187, 212–222 (2018).
1.
Davis, R. G. et al. Top-Down Proteomics Enables Comparative Analysis of Brain Proteoforms Between Mouse Strains. Anal. Chem. (2018) doi:10.1021/acs.analchem.7b04108.
1.
Schmit, P.-O. et al. Towards a routine application of Top-Down approaches for label-free discovery workflows. Journal of Proteomics 175, 12–26 (2018).
1.
DeHart, C. J., Fellers, R. T., Fornelli, L., Kelleher, N. L. & Thomas, P. M. Bioinformatics Analysis of Top-Down Mass Spectrometry Data with ProSight Lite. in Protein Bioinformatics 381–394 (Humana Press, New York, NY, 2017). doi:10.1007/978-1-4939-6783-4_18.
1.
Khan, A., Eikani, C. K., Khan, H., Iavarone, A. T. & Pesavento, J. J. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications. J. Proteome Res. (2017) doi:10.1021/acs.jproteome.7b00780.
1.
Lermyte, F., Łącki, M. K., Valkenborg, D., Gambin, A. & Sobott, F. Conformational Space and Stability of ETD Charge Reduction Products of Ubiquitin. J. Am. Soc. Mass Spectrom. 28, 69–76 (2017).
1.
Guthals, A. et al. De Novo MS/MS Sequencing of Native Human Antibodies. J. Proteome Res. 16, 45–54 (2017).
1.
Haverland, N. A. et al. Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. 28, 1203–1215 (2017).
1.
Penque, D., Marcus, K. & Torres, V. M. Editorial: Breakthroughs in top-down proteomics. Journal of Proteomics (2017) http://doi.org/10.1016/j.jprot.2017.12.011.
1.
Schaffer, L. V. et al. Expanding Proteoform Identifications in Top-Down Proteomic Analyses by Constructing Proteoform Families. Anal. Chem. (2017) doi:10.1021/acs.analchem.7b04221.
1.
1.
Kar, U. K., Simonian, M. & Whitelegge, J. P. Integral membrane proteins: bottom-up, top-down and structural proteomics. Expert Review of Proteomics 14, 715–723 (2017).
1.
Melani, R. D., Nogueira, F. C. S. & Domont, G. B. It is time for top-down venomics. Journal of Venomous Animals and Toxins including Tropical Diseases 23, 44 (2017).
1.
Chang, H.-Y. et al. iTop-Q: an intelligent tool for top-down proteomics quantitation us-ing DYAMOND algorithm. Anal. Chem. (2017) doi:10.1021/acs.analchem.7b02343.
1.
Nedelkov, D. Mass spectrometry protein tests: ready for prime time (or not). Expert Review of Proteomics 14, 1–7 (2017).
1.
Gil, G. et al. Proteoform-Specific Protein Binding of Small Molecules in Complex Matrices. ACS Chem. Biol. 12, 389–397 (2017).
1.
Chen, B. et al. The Impact of Phosphorylation on Electron Capture Dissociation of Proteins: A Top-Down Perspective. J. Am. Soc. Mass Spectrom. 28, 1805–1814 (2017).
1.
Lyon, Y. A., Riggs, D., Fornelli, L., Compton, P. D. & Julian, R. R. The Ups and Downs of Repeated Cleavage and Internal Fragment Production in Top-Down Proteomics. J. Am. Soc. Mass Spectrom. 1–8 (2017) http://doi.org/10.1007/s13361-017-1823-8.
1.
Liu, X. et al. Top-down and bottom-up analysis of commercial enoxaparins. Journal of Chromatography A 1480, 32–40 (2017).
1.
Xiao, K., Yu, F. & Tian, Z. Top-down protein identification using isotopic envelope fingerprinting. Journal of Proteomics 152, 41–47 (2017).
1.
Cai, W. et al. Top-down proteomics for assessing the maturation of stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology 112, 165–166 (2017).
1.
Chen, B., Brown, K. A., Lin, Z. & Ge, Y. Top-down Proteomics: Ready for Prime Time? Anal. Chem. (2017) doi:10.1021/acs.analchem.7b04747.
1.
1.
Floris, F. et al. 2D FT-ICR MS of Calmodulin: A Top-Down and Bottom-Up Approach. J. Am. Soc. Mass Spectrom. 27, 1531–1538 (2016).
1.
Vorontsov, E. A., Rensen, E., Prangishvili, D., Krupovic, M. & Chamot-Rooke, J. Abundant Lysine Methylation and N-Terminal Acetylation in Sulfolobus islandicus Revealed by Bottom-Up and Top-Down Proteomics. Mol Cell Proteomics 15, 3388–3404 (2016).
1.
1.
Kachuk, C., Faulkner, M., Liu, F. & Doucette, A. A. Automated SDS Depletion for Mass Spectrometry of Intact Membrane Proteins though Transmembrane Electrophoresis. J. Proteome Res. 15, 2634–2642 (2016).
1.
Hühner, J. & Neusüß, C. CIEF-CZE-MS applying a mechanical valve. Anal Bioanal Chem 408, 4055–4061 (2016).
1.
Halim, M. A. et al. Combined Infrared Multiphoton Dissociation with Ultraviolet Photodissociation for Ubiquitin Characterization. J. Am. Soc. Mass Spectrom. 27, 1435–1442 (2016).
1.
Pan, J., Zhang, S. & Borchers, C. H. Comparative higher-order structure analysis of antibody biosimilars using combined bottom-up and top-down hydrogen-deuterium exchange mass spectrometry. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1864, 1801–1808 (2016).
1.
Tran, N. H. et al. Complete De Novo Assembly of Monoclonal Antibody Sequences. Scientific Reports 6, srep31730 (2016).
1.
Jin, Y. et al. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics. J Muscle Res Cell Motil 37, 41–52 (2016).
1.
Yu, D., Peng, Y., Ayaz-Guner, S., Gregorich, Z. R. & Ge, Y. Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. 27, 220–232 (2016).
1.
Cramer, C. N., Haselmann, K. F., Olsen, J. V. & Nielsen, P. K. Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry. Anal. Chem. 88, 1585–1592 (2016).
1.
Sunagar, K., Morgenstern, D., Reitzel, A. M. & Moran, Y. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. Journal of Proteomics 135, 62–72 (2016).
1.
Shortreed, M. R. et al. Elucidating Proteoform Families from Proteoform Intact-Mass and Lysine-Count Measurements. J. Proteome Res. 15, 1213–1221 (2016).
1.
Riley, N. M. et al. Enhanced Dissociation of Intact Proteins with High Capacity Electron Transfer Dissociation. J. Am. Soc. Mass Spectrom. 27, 520–531 (2016).
1.
Zheng, Y., Huang, X. & Kelleher, N. L. Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Current Opinion in Chemical Biology 33, 142–150 (2016).
1.
Geis-Asteggiante, L., Ostrand-Rosenberg, S., Fenselau, C. & Edwards, N. J. Evaluation of Spectral Counting for Relative Quantitation of Proteoforms in Top-Down Proteomics. Anal. Chem. 88, 10900–10907 (2016).
1.
Zhao, Y., Sun, L., Knierman, M. D. & Dovichi, N. J. Fast separation and analysis of reduced monoclonal antibodies with capillary zone electrophoresis coupled to mass spectrometry. Talanta 148, 529–533 (2016).
1.
Quijada, J. V., Schmitt, N. D., Salisbury, J. P., Auclair, J. R. & Agar, J. N. Heavy Sugar and Heavy Water Create Tunable Intact Protein Mass Increases for Quantitative Mass Spectrometry in Any Feed and Organism. Anal. Chem. 88, 11139–11146 (2016).
1.
1.
Mikhailov, V. A. et al. Infrared Laser Activation of Soluble and Membrane Protein Assemblies in the Gas Phase. Anal. Chem. 88, 7060–7067 (2016).
1.
Soler, L. et al. Intact Cell MALDI-TOF MS on Sperm: A Molecular Test For Male Fertility Diagnosis. Mol Cell Proteomics 15, 1998–2010 (2016).
1.
Fang, H. et al. Intact Protein Quantitation Using Pseudoisobaric Dimethyl Labeling. Anal. Chem. 88, 7198–7205 (2016).
1.
1.
Griffiths, R. L., Creese, A. J., Race, A. M., Bunch, J. & Cooper, H. J. LESA FAIMS Mass Spectrometry for the Spatial Profiling of Proteins from Tissue. Anal. Chem. 88, 6758–6766 (2016).
1.
Labas, V. et al. Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry. Journal of Proteomics 113, 226–243 (2015).
1.
Jesus, J. R. de, Campos, B. K. de, Galazzi, R. M., Martinez, J. L. C. & Arruda, M. A. Z. Bipolar disorder: recent advances and future trends in bioanalytical developments for biomarker discovery. Anal Bioanal Chem 407, 661–667 (2015).
1.
Cegelski, L. Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition. Journal of Magnetic Resonance 253, 91–97 (2015).
1.
Lermyte, F. et al. Characterization of top-down ETD in a travelling-wave ion guide. Methods 89, 22–29 (2015).
1.
Scherl, A. Clinical protein mass spectrometry. Methods 81, 3–14 (2015).
1.
1.
Tilton, S. C. et al. Data integration reveals key homeostatic mechanisms following low dose radiation exposure. Toxicology and Applied Pharmacology 285, 1–11 (2015).
1.
Han, F., Yang, Y., Ouyang, J. & Na, N. Direct analysis of in-gel proteins by carbon nanotubes-modified paper spray ambient mass spectrometry. Analyst 140, 710–715 (2015).
1.
Chen, Y.-C., Sumandea, M. P., Larsson, L., Moss, R. L. & Ge, Y. Dissecting human skeletal muscle troponin proteoforms by top-down mass spectrometry. J. Muscle Res. Cell. Motil. 36, 169–181 (2015).
1.
1.
Wongkongkathep, P. et al. Enhancing protein disulfide bond cleavage by UV excitation and electron capture dissociation for top-down mass spectrometry. International Journal of Mass Spectrometry 390, 137–145 (2015).
1.
Pan, J., Zhang, S., Chou, A., Hardie, D. B. & Borchers, C. H. Fast Comparative Structural Characterization of Intact Therapeutic Antibodies Using Hydrogen–Deuterium Exchange and Electron Transfer Dissociation. Anal. Chem. 87, 5884–5890 (2015).
1.
Badugu, R. et al. Fluorescence Spectroscopy with Metal–Dielectric Waveguides. J. Phys. Chem. C 119, 16245–16255 (2015).
1.
Petrotchenko, E. V. & Borchers, C. H. HDX Match Software for the Data Analysis of Top-Down ECD-FTMS Hydrogen/Deuterium Exchange Experiments. J. Am. Soc. Mass Spectrom. 26, 1895–1898 (2015).
1.
Cabras, T. et al. High-resolution mass spectrometry for thymosins detection and characterization. Expert Opinion on Biological Therapy 15, 191–201 (2015).
1.
Zhang, J., Loo, R. R. O. & Loo, J. A. Increasing fragmentation of disulfide-bonded proteins for top–down mass spectrometry by supercharging. International Journal of Mass Spectrometry 377, 546–556 (2015).
1.
Cai, Y. et al. Integration of Electrochemistry with Ultra-Performance Liquid Chromatography/Mass Spectrometry. Eur J Mass Spectrom (Chichester) 21, 341–351 (2015).
1.
Law, K. P., Han, T.-L., Tong, C. & Baker, P. N. Mass Spectrometry-Based Proteomics for Pre-Eclampsia and Preterm Birth. International Journal of Molecular Sciences 16, 10952–10985 (2015).
1.
Zhang, J., Malmirchegini, G. R., Clubb, R. T. & Loo, J. A. Native Top-down Mass Spectrometry for the Structural Characterization of Human Hemoglobin. Eur J Mass Spectrom (Chichester) 21, 221–231 (2015).
1.
Chang, Y.-H. et al. New mass-spectrometry-compatible degradable surfactant for tissue proteomics. J. Proteome Res. 14, 1587–1599 (2015).
1.
Kim, K. H., Compton, P. D., Tran, J. C. & Kelleher, N. L. Online Matrix Removal Platform for Coupling Gel-Based Separations to Whole Protein Electrospray Ionization Mass Spectrometry. J. Proteome Res. 14, 2199–2206 (2015).
1.
Lyon, Y. A. & Julian, R. R. Photolytic determination of charge state for large proteins and fragments in an ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 29, 322–326 (2015).
1.
Gustafsson, O. J. R., Arentz, G. & Hoffmann, P. Proteomic developments in the analysis of formalin-fixed tissue. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1854, 559–580 (2015).
1.
Cabras, T. et al. Proteomic investigation of whole saliva in Wilson's disease. Journal of Proteomics 128, 154–163 (2015).
1.
1.
Bladergroen, M. R. & van der Burgt, Y. E. M. Solid-Phase Extraction Strategies to Surmount Body Fluid Sample Complexity in High-Throughput Mass Spectrometry-Based Proteomics. Journal of Analytical Methods in Chemistry (2015) doi:10.1155/2015/250131.
1.
Arentz, G., Weiland, F., Oehler, M. K. & Hoffmann, P. State of the art of 2D DIGE. Prot. Clin. Appl. 9, 277–288 (2015).
1.
Cammarata, M. B., Thyer, R., Rosenberg, J., Ellington, A. & Brodbelt, J. S. Structural Characterization of Dihydrofolate Reductase Complexes by Top-Down Ultraviolet Photodissociation Mass Spectrometry. J. Am. Chem. Soc. 137, 9128–9135 (2015).
1.
Nicolardi, S., Switzar, L., Deelder, A. M., Palmblad, M. & van der Burgt, Y. E. M. Top-Down MALDI-In-Source Decay-FTICR Mass Spectrometry of Isotopically Resolved Proteins. Anal. Chem. 87, 3429–3437 (2015).
1.
Geis-Asteggiante, L., Dhabaria, A., Edwards, N., Ostrand-Rosenberg, S. & Fenselau, C. Top–down analysis of low mass proteins in exosomes shed by murine myeloid-derived suppressor cells. International Journal of Mass Spectrometry 378, 264–269 (2015).
1.
Lee, Y. S. et al. Topological network analysis of differentially expressed genes in cancer cells with acquired gefitinib resistance. Cancer Genomics Proteomics 12, 153–166 (2015).
1.
Petras, D., Heiss, P., Süssmuth, R. D. & Calvete, J. J. Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches. J. Proteome Res. 14, 2539–2556 (2015).
1.
Birner-Gruenberger, R. & Breinbauer, R. Weighing the Proteasome for Covalent Modifications. Chemistry & Biology 22, 315–316 (2015).
1.
Oliveira, B. M., Coorssen, J. R. & Martins-de-Souza, D. 2DE: The Phoenix of Proteomics. Journal of Proteomics 104, 140–150 (2014).
1.
Kuppannan, K., Julka, S., Karnoup, A., Dielman, D. & Schafer, B. 2DLC-UV/MS Assay for the Simultaneous Quantification of Intact Soybean Allergens Gly m 4 and Hydrophobic Protein from Soybean (HPS). J. Agric. Food Chem. 62, 4884–4892 (2014).
1.
1.
Ntai, I. et al. Applying Label-Free Quantitation to Top Down Proteomics. Anal. Chem. 86, 4961–4968 (2014).
1.
Durbin, K. R., Fellers, R. T., Ntai, I., Kelleher, N. L. & Compton, P. D. Autopilot: An Online Data Acquisition Control System for the Enhanced High-Throughput Characterization of Intact Proteins. Anal. Chem. 86, 1485–1492 (2014).
1.
Ree, A. H., Meltzer, S., Flatmark, K., Dueland, S. & Kalanxhi, E. Biomarkers of Treatment Toxicity in Combined-Modality Cancer Therapies with Radiation and Systemic Drugs: Study Design, Multiplex Methods, Molecular Networks. International Journal of Molecular Sciences 15, 22835–22856 (2014).
1.
Zhao, Y., Sun, L., Champion, M. M., Knierman, M. D. & Dovichi, N. J. Capillary Zone Electrophoresis–Electrospray Ionization-Tandem Mass Spectrometry for Top-Down Characterization of the Mycobacterium marinum Secretome. Anal. Chem. 86, 4873–4878 (2014).
1.
1.
Kelleher, N. L., Thomas, P. M., Ntai, I., Compton, P. D. & LeDuc, R. D. Deep and quantitative top-down proteomics in clinical and translational research. Expert Review of Proteomics 11, 649–651 (2014).
1.
Xiu, L., Valeja, S. G., Alpert, A. J., Jin, S. & Ge, Y. Effective Protein Separation by Coupling Hydrophobic Interaction and Reverse Phase Chromatography for Top-down Proteomics. Anal. Chem. 86, 7899–7906 (2014).
1.
Wu, Z., Wei, B., Zhang, X. & Wirth, M. J. Efficient Separations of Intact Proteins Using Slip-Flow with Nano-Liquid Chromatography–Mass Spectrometry. Anal. Chem. 86, 1592–1598 (2014).
1.
Brunner, A. M., Nanni, P. & Mansuy, I. M. Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics & Chromatin 7, 2 (2014).
1.
Skinner, O. S. et al. Fragmentation of Integral Membrane Proteins in the Gas Phase. Anal. Chem. 86, 4627–4634 (2014).
1.
Tsybin, Y. O. From High- to Super-resolution Mass Spectrometry. CHIMIA International Journal for Chemistry 68, 168–174 (2014).
1.
Zhang, Z., Wu, S., Stenoien, D. L. & Paša-Tolić, L. High-Throughput Proteomics. Annual Rev. Anal. Chem. 7, 427–454 (2014).
1.
Cong, Q. et al. In vitro differentiation of bone marrow mesenchymal stem cells into endometrial epithelial cells in mouse: a proteomic analysis. Int J Clin Exp Pathol 7, 3662–3672 (2014).
1.
Erba, E. B. Investigating macromolecular complexes using top-down mass spectrometry. Proteomics 14, 1259–1270 (2014).
1.
Ait-Belkacem, R. et al. MALDI imaging and in-source decay for top-down characterization of glioblastoma. Proteomics 14, 1290–1301 (2014).
1.
Zhang, H., Cui, W. & Gross, M. L. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Letters 588, 308–317 (2014).
1.
Li, Y., Compton, P. D., Tran, J. C., Ntai, I. & Kelleher, N. L. Optimizing capillary electrophoresis for top-down proteomics of 30–80 kDa proteins. Proteomics 14, 1158–1164 (2014).
1.
Warnke, S., Baldauf, C., Bowers, M. T., Pagel, K. & von Helden, G. Photodissociation of Conformer-Selected Ubiquitin Ions Reveals Site-Specific Cis/Trans Isomerization of Proline Peptide Bonds. J. Am. Chem. Soc. 136, 10308–10314 (2014).
1.
Polunina, T. A., Varshavskaia, I. S., Grigor’eva, G. V. & Krasnov, I. M. [Proteomic methods of protein separation and analysis]. Zh. Mikrobiol. Epidemiol. Immunobiol. 107–114 (2014).
1.
Inserra, I. et al. Proteomic Study of Pilocytic Astrocytoma Pediatric Brain Tumor Intracystic Fluid. J. Proteome Res. 13, 4594–4606 (2014).
1.
Gregorich, Z. R., Chang, Y.-H. & Ge, Y. Proteomics in heart failure: top-down or bottom-up? Pflugers Arch - Eur J Physiol 466, 1199–1209 (2014).
1.
Gueugneau, M. et al. Proteomics of muscle chronological ageing in post-menopausal women. BMC Genomics 15, 1165 (2014).
1.
Sarbu, M., Ghiulai, R. M. & Zamfir, A. D. Recent developments and applications of electron transfer dissociation mass spectrometry in proteomics. Amino Acids 46, 1625–1634 (2014).
1.
Doucette, A. A., Vieira, D. B., Orton, D. J. & Wall, M. J. Resolubilization of Precipitated Intact Membrane Proteins with Cold Formic Acid for Analysis by Mass Spectrometry. J. Proteome Res. 13, 6001–6012 (2014).
1.
Li, H., Wongkongkathep, P., Orden, S. L. V., Loo, R. R. O. & Loo, J. A. Revealing Ligand Binding Sites and Quantifying Subunit Variants of Noncovalent Protein Complexes in a Single Native Top-Down FTICR MS Experiment. J. Am. Soc. Mass Spectrom. 25, 2060–2068 (2014).
1.
Ichibangase, T. & Imai, K. Straightforward proteomic analysis reveals real dynamics of proteins in cells. Journal of Pharmaceutical and Biomedical Analysis 101, 31–39 (2014).
1.
1.
Sarsby, J., Martin, N. J., Lalor, P. F., Bunch, J. & Cooper, H. J. Top-Down and Bottom-Up Identification of Proteins by Liquid Extraction Surface Analysis Mass Spectrometry of Healthy and Diseased Human Liver Tissue. J. Am. Soc. Mass Spectrom. 25, 1953–1961 (2014).
1.
Kiss, A., Smith, D. F., Reschke, B. R., Powell, M. J. & Heeren, R. M. A. Top-down mass spectrometry imaging of intact proteins by laser ablation ESI FT-ICR MS. Proteomics 14, 1283–1289 (2014).
1.
Peng, Y., Ayaz-Guner, S., Yu, D. & Ge, Y. Top-down mass spectrometry of cardiac myofilament proteins in health and disease. Prot. Clin. Appl. 8, 554–568 (2014).
1.
Scheffler, K. Top-Down Proteomics by Means of Orbitrap Mass Spectrometry. in Shotgun Proteomics 465–487 (Humana Press, New York, NY, 2014). doi:10.1007/978-1-4939-0685-7_31.
1.
Gregorich, Z. R. & Ge, Y. Top-down proteomics in health and disease: Challenges and opportunities. Proteomics 14, 1195–1210 (2014).
1.
Das, R. et al. Automated Analysis of Hemoglobin Variants Using NanoLC–MS and Customized Databases. J. Proteome Res. 12, 3215–3222 (2013).
1.
1.
Maier, S. K. et al. Comprehensive identification of proteins from MALDI imaging. Mol. Cell Proteomics 12, 2901–2910 (2013).
1.
Zhao, D. S., Gregorich, Z. R. & Ge, Y. High throughput screening of disulfide-containing proteins in a complex mixture. Proteomics 13, 3256–3260 (2013).
1.
Shvartsburg, A. A. & Smith, R. D. High-Resolution Differential Ion Mobility Spectrometry of a Protein. Anal. Chem. 85, 10–13 (2013).
1.
Nicolardi, S., van der Burgt, Y. E. M., Dragan, I., Hensbergen, P. J. & Deelder, A. M. Identification of New Apolipoprotein-CIII Glycoforms with Ultrahigh Resolution MALDI-FTICR Mass Spectrometry of Human Sera. J. Proteome Res. 12, 2260–2268 (2013).
1.
Liu, X. et al. Identification of Ultramodified Proteins Using Top-Down Tandem Mass Spectra. J. Proteome Res. 12, 5830–5838 (2013).
1.
Peng, Y. et al. In-depth Proteomic Analysis of Human Tropomyosin by Top-down Mass Spectrometry. J Muscle Res Cell Motil 34, (2013).
1.
Rose, C. M. et al. Multipurpose Dissociation Cell for Enhanced ETD of Intact Protein Species. J. Am. Soc. Mass Spectrom. 24, 816–827 (2013).
1.
Smith, L. M., Kelleher, N. L. & Proteomics, T. C. for T. D. Proteoform: a single term describing protein complexity. Nat Meth 10, 186–187 (2013).
1.
Guy, M. J. et al. The Impact of Antibody Selection on the Detection of Cardiac Troponin I. Clin Chim Acta 420, 82–88 (2013).
1.
Catherman, A. D. et al. Top Down Proteomics of Human Membrane Proteins from Enriched Mitochondrial Fractions. Anal. Chem. 85, 1880–1888 (2013).
1.
Mao, Y., Valeja, S. G., Rouse, J. C., Hendrickson, C. L. & Marshall, A. G. Top-Down Structural Analysis of an Intact Monoclonal Antibody by Electron Capture Dissociation-Fourier Transform Ion Cyclotron Resonance-Mass Spectrometry. Anal. Chem. 85, 4239–4246 (2013).
1.
Peng, Y. et al. Top-down Targeted Proteomics for Deep Sequencing of Tropomyosin Isoforms. J. Proteome Res. 12, 187–198 (2013).
1.
Chen, X. & Ge, Y. Ultrahigh pressure fast size exclusion chromatography for top-down proteomics. Proteomics 13, 2563–2566 (2013).
1.
Drabik, A., Bodzon-Kulakowska, A. & Suder, P. Application of the ETD/PTR reactions in top-down proteomics as a faster alternative to bottom-up nanoLC-MS/MS protein identification. J. Mass Spectrom. 47, 1347–1352 (2012).
1.
1.
Marty, M. T. et al. Native Mass Spectrometry Characterization of Intact Nanodisc Lipoprotein Complexes. Anal. Chem. 84, 8957–8960 (2012).
1.
Castagnola, M. et al. Top-down platform for deciphering the human salivary proteome. The Journal of Maternal-Fetal & Neonatal Medicine 25, 27–43 (2012).
1.
Edwards, R. L., Griffiths, P., Bunch, J. & Cooper, H. J. Top-Down Proteomics and Direct Surface Sampling of Neonatal Dried Blood Spots: Diagnosis of Unknown Hemoglobin Variants. J. Am. Soc. Mass Spectrom. 23, 1921–1930 (2012).
1.
Wigginton, K. R. et al. UV Radiation Induces Genome-Mediated, Site-Specific Cleavage in Viral Proteins. ChemBioChem 13, 837–845 (2012).
1.
Tipton, J. D. et al. Analysis of Intact Protein Isoforms by Mass Spectrometry. J. Biol. Chem. 286, 25451–25458 (2011).
1.
Tran, J. C. et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480, 254–258 (2011).
1.
Yin, S. & Loo, J. A. Top-down mass spectrometry of supercharged native protein–ligand complexes. International Journal of Mass Spectrometry 300, 118–122 (2011).